# **<u>Chapter 8 :</u>** Pavement Management

The ultimate goal of a pavement management program is to bring all roadways up to good to excellent condition and maintain that condition into the future in the most expeditious and cost effective manner.

Unfortunately, local roadway improvements are often made based on public pressure. Sometimes those suggestions get implemented without regard to cost effectiveness or engineering standards. Decisions on improvements ultimately must be made incorporating sound engineering judgment. Local and state officials must listen to the general public's opinion on roadway improvement needs; but ultimately, decisions on improvements must be made with regard to engineering judgment. SRPEDD, on behalf of the Southeastern Massachusetts Metropolitan Planning Organization (SMMPO), has been providing pavement management services for member communities since 1984. SRPEDD has just completed a regional *Pavement Management Program* of functionally classified, federal-aid eligible roadways as part of our Unified Work Program. This effort was carried out over a three-year period (2004 – 2006).

The strategy considered to be the most cost-effective is referred to as the "Best First" approach, which initially concentrates investment on routine and preventative maintenance to the roads currently in fair to good condition. This approach extends the useful life of roads by preventing rapid deterioration. Spending money on routine maintenance now will prevent the need for more expensive repairs in the future (See Figure 8-1 below).





Ch. 8 Page 1

Although the "Best First" approach is considered the most efficient, current levels of funding do not provide sufficient dollars to effectively carry out a maintenance program while addressing severely deteriorated roads. The result is ever worsening road conditions that will lead to unsafe driving conditions and more expensive repairs.

### Local Pavement Management

The local pavement management program is offered to all communities. It provides an evaluation of pavement conditions and recommended improvements for the community's road network. Staff from participating municipalities are instructed on procedures to collect road condition data that is then provided to SRPEDD for analysis. SRPEDD uses the computer software "Road Surface Management System" (RSMS) to analyze the condition data. The final product is a pavement management report that includes a summary of all road conditions, recommended repairs, and a priority list of roads needing repair with cost estimates.

Municipalities that have participated in the program include: Acushnet, Carver, Dartmouth, Fairhaven, Freetown, Marion, Mattapoisett, New Bedford, North Attleborough, Rehoboth, Rochester, Seekonk, Somerset, Swansea, and Taunton. SRPEDD continues to offer this assistance to communities free of charge with support from the Federal Highway Administration (FHWA) and the Massachusetts Highway Department (MassHighway).

### **Regional Pavement Management**

The regional pavement management program consists of collecting, evaluating, and reporting on the pavement conditions of all roads eligible for funding from the Surface Transportation Program (STP). These roadways account for 26% of the total STP and State & Local roadway mileage in our region. These roads provide access to urban centers, government, residential areas, emergency facilities, retail establishments, schools, and places of employment. Many of these roads are U.S. or state-numbered highways. SRPEDD is annually committed to updating the pavement condition data to determine where repairs are needed.

Currently, 30% of STP-funded roadways require no maintenance, 48% are in good condition, 5% need preventive maintenance, 10% require rehabilitation, and 7% are in need of reconstruction (See Figure 8-2 on the following page). Roads requiring no maintenance or routine maintenance are considered to be in excellent condition. Roads in good condition require inexpensive, preventive surface treatments to maintain their condition. Roads requiring rehabilitation or reconstruction are considered to be in fair and poor condition. These roads require a more durable surface, possible sub-surface improvements, are typically more expensive to repair, and frequently require a longer time frame for implementation.



Figure 8-2 Regional STP Road Conditions, 2004-2006 Results

It is estimated that it would cost over \$89 million dollars to bring all of the region's STP fair to poor roadways to a good condition. This amount does not take into consideration the cost of routine maintenance. It is difficult to estimate the cost associated with routine maintenance because the amount of required material is dependent on the level and area of distress. Annual investments to maintain a road network in good to excellent condition are necessary. Allowing roads to deteriorate beyond the point at which normal maintenance is effective will double, and more often triple, the cost for corrective measures.

The reality is that the region cannot financially keep up with the normal deterioration of pavement. The ideal goal of pavement management is to repair as many road miles as possible resulting in upgrades to the "none required" and "routine maintenance" category. If that could be accomplished, the end result would require less tax dollars to maintain the existing road network. However, because of the extremely high rehabilitation and reconstruction costs, this is fiscally and physically impossible to attain under current funding constraints. Additional funding for rehabilitation/reconstruction is necessary to achieve the goal of a good, sound road network that will last for many years.

Based on our existing 2007–2010 Transportation Improvement Program (TIP), approximately \$25 million is allocated towards Reconstruction and Rehabilitation projects over the four year period. Using pavement management forecasting software with current road conditions and level funding of the TIP at \$8.5 million per year for 2010-2016, our analysis estimates that the percentage of STP roads that need reconstruction and rehabilitation will increase from 17% to 53% by 2016. This increase in substandard roads needs to be avoided. The pavement management software recommends a yearly investment of \$30 million in order to maintain the existing conditions of STP roads with the same 17% reconstruction and rehabilitation ratio.

If this increase is not implemented, the burden of maintenance on these roadways will be passed onto individual communities. Communities are currently struggling to maintain their local roadways, which account for 69% of the total roadway mileage in our region. Using what limited amount of Chapter 90 funding that they are receiving, it is unfair to require them to supplement and maintain additional roadways, which are eligible for federal funding. The amount of state and federal funding alone does not allow communities to keep up with pavement maintenance needs.

It has been the MPO's policy to give precedence to projects that address safety and mobility issues, causing a simple reconstruction or rehabilitation project to have less significance and take years to be programmed into the TIP. Although these roads qualify for federal funding, they are subject to federal design standards and restrictions. In some cases, waivers are possible, but often these roads are repaired through chapter 90 funding or non-federal aid programs because of cost effectiveness and less strict design standards.

The amount of Chapter 90 funding in our region has decreased since the late 1990's (See Table 8-1 below). In 1997, Chapter 90 funding was over \$13 million. If annual Chapter 90 funding had simply kept pace with inflation and rising costs, the yearly allocation would be at \$17 million. At the present level (\$11 million), this region's funds have dropped approximately 20% in the last ten years.

| Year | Ch 90 Allocation<br>(SMMPO Region) |
|------|------------------------------------|
| 1997 | \$13,668,583                       |
| 2000 | \$9,128,160                        |
| 2001 | \$9,099,506                        |
| 2002 | \$9,128,142                        |
| 2003 | \$9,177,413                        |
| 2004 | \$9,159,636                        |
| 2005 | \$11,072,797                       |
| 2006 | \$11,123,094                       |
| 2007 | \$10,949,383                       |

# Table 8-1SMMPO Chapter 90 Allocations

In addition to roadway construction improvements Chapter 90 funds can also be used to build bikeways, purchase machinery and equipment, construct salt sheds and garages, etc. With these additional, but viable uses for money, communities have to make difficult choices within their own budgets for roadway improvements.

The amount of Chapter 90 funding allocated to the SRPEDD communities for 2007 is approximately \$11 million, which averages approximately \$405,000 per community. This average amount of funding is insufficient to reconstruct one mile of roadway. It is apparent that the region's road network cannot be adequately maintained solely by means of existing funds. Additional funds must be made available at the federal, state, and local levels of government.

## Projects

The reconstruction of a deteriorated roadway generally does not take precedence over a roadway requiring safety improvements or the rehabilitation of a structurally deficient bridge, however there are roadways in our region that are seriously deteriorated and deserve consideration for the limited funds available.

These roads are deteriorated to the extent that they are adversely affecting the safety of motorists. Roadways with deep potholes are causing motorists to weave into oncoming lanes to avoid them, making driving conditions unsafe. Severe pavement distress hinders the ability of drivers to travel at the speed limit, causing congestion and inefficient (stop and go) operation of the motor vehicle, increasing the amount of pollution deposited into the air. Frequently, motorists seek alternate routings on less distressed roads, adding vehicle miles traveled and increased exhaust emissions. Poor pavement condition also places a financial burden on local communities, as motorists file claims for vehicle and tire damage.

Ideally, a pavement management program promotes maintaining roads in good condition rather than allowing pavement to deteriorate to the point where more expensive repairs (i.e. rehabilitation and reconstruction) become necessary. However, due to this region's severe weather conditions and rapidly deteriorating roadways, communities may need to focus their efforts on roads requiring immediate reconstruction.

Based on roadway condition surveys and the Road Surface Management System program evaluation the following tables provide recommended maintenance options for numerous roadways in our region. In many instances these recommendations are only for specific segments within each roadway. It is also important to note that some of these roads may have already been repaired due to the fact that some of the surveys date back to 2004. These listing are intended to be used primarily as a guide. It is the responsibility of each community's highway superintendent and/or engineer to determine if these repair categories are appropriate for each individual roadway.

| Community          | Roadway                  | Functional Class         | Length |
|--------------------|--------------------------|--------------------------|--------|
| Acushnet           | Main Street              | Urban Minor Arterial     | 0.862  |
| Dartmouth          | Bakerville Road          | Urban Minor Arterial     | 0.290  |
| Dartmouth          | Old Westport Road        | Urban Minor Arterial     | 1.560  |
| Fairhaven          | Howland Road             | Urban Minor Arterial     | 0.300  |
| Fairhaven          | Huttleston Avenue        | Principal Arterial       | 0.750  |
| Fairhaven          | Main Street              | Urban Minor Arterial     | 0.250  |
| Fall River         | Central Street           | Urban Minor Arterial     | 0.320  |
| Fall River         | Jefferson Street         | Urban Minor Arterial     | 0.260  |
| Fall River         | Seventh Street           | Urban Minor Arterial     | 0.100  |
| Middleborough      | East Main Street         | Urban Minor Arterial     | 0.470  |
| Middleborough      | North Main Street        | Urban Minor Arterial     | 0.390  |
| Mansfield          | East Street              | Urban Collector          | 0.670  |
| Mansfield          | Pratt Street             | Urban Principal Arterial | 0.370  |
| North Attleborough | East Washington Street   | Urban Minor Arterial     | 0.390  |
| New Bedford        | Acushnet Avenue          | Urban Minor Arterial     | 3.570  |
| New Bedford        | Brock Avenue             | Urban Minor Arterial     | 1.460  |
| New Bedford        | Coffin Avenue            | Urban Minor Arterial     | 0.190  |
| New Bedford        | Cottage Street           | Urban Minor Arterial     | 0.470  |
| New Bedford        | County Street            | Urban Minor Arterial     | 2.920  |
| New Bedford        | Cove Road                | Urban Principal Arterial | 0.460  |
| New Bedford        | Deane Street             | Urban Minor Arterial     | 0.110  |
| New Bedford        | Mill Street              | Urban Minor Arterial     | 1.250  |
| New Bedford        | Nash Road                | Urban Minor Arterial     | 0.740  |
| New Bedford        | Penniman Street          | Urban Minor Arterial     | 0.300  |
| New Bedford        | Sixth Street             | Urban Minor Arterial     | 0.320  |
| New Bedford        | Summer Street            | Urban Minor Arterial     | 0.440  |
| Plainville         | South Street (Rt. 1A)    | Urban Minor Arterial     | 0.250  |
| Raynham            | North Main Street        | Urban Minor Arterial     | 1.640  |
| Somerset           | High Street              | Urban Minor Arterial     | 0.230  |
| Swansea            | GAR Highway              | Urban Minor Arterial     | 1.040  |
| Taunton            | Broadway                 | Urban Minor Arterial     | 0.530  |
| Taunton            | Myricks Street (Rte. 79) | Urban Principal Arterial | 1.520  |
| Taunton            | Railroad Avenue          | Urban Minor Arterial     | 0.140  |
| Taunton            | Somerset Avenue          | Urban Minor Arterial     | 1.550  |
| Westport           | GAR Highway              | Urban Minor Arterial     | 1.490  |

# Table 8-2Roadways Requiring Reconstruction

| Community          | Roadway               | Functional Class         | Length |
|--------------------|-----------------------|--------------------------|--------|
| Attleboro          | County Street         | Principal Arterial       | 1.140  |
| Attleboro          | County Street         | Urban Minor Arterial     | 2.370  |
| Attleboro          | Holden Street         | Urban Minor Arterial     | 0.200  |
| Attleboro          | Lathrop Road          | Urban Minor Arterial     | 0.650  |
| Attleboro          | Maple Street          | Urban Minor Arterial     | 0.210  |
| Attleboro          | Oakhill Avenue        | Urban Principal Arterial | 0.310  |
| Attleboro          | Park Street           | Urban Principal Arterial | 0.100  |
| Attleboro          | Pleasant Street       | Principal Arterial       | 0.070  |
| Attleboro          | Robert F Toner Blvd   | Urban Minor Arterial     | 0.170  |
| Attleboro          | South Main Street     | Urban Minor Arterial     | 0.110  |
| Attleboro          | Starkey Avenue        | Urban Minor Arterial     | 0.100  |
| Dartmoth           | Dartmouth Street      | Urban Minor Arterial     | 0.670  |
| Dartmoth           | Faunce Corner Road    | Urban Minor Arterial     | 1.360  |
| Dartmoth           | Gulf Road             | Urban Minor Arterial     | 0.370  |
| Dartmoth           | Hawthorn Street       | Urban Minor Arterial     | 0.580  |
| Dartmoth           | Old Fall River Road   | Urban Collector          | 1.790  |
| Dighton            | Warner Blvd           | Urban Minor Arterial     | 0.170  |
| Fairhaven          | Howland Road          | Urban Minor Arterial     | 0.330  |
| Fairhaven          | Main Street           | Urban Minor Arterial     | 1.060  |
| Fall River         | Brayton Avenue        | Urban Minor Arterial     | 1.510  |
| Fall River         | Broadway              | Urban Minor Arterial     | 0.630  |
| Fall River         | Globe Street          | Urban Minor Arterial     | 1.310  |
| Fall River         | Hartwell Street       | Urban Minor Arterial     | 0.260  |
| Fall River         | Mariano Bishop Blvd   | Urban Minor Arterial     | 0.140  |
| Fall River         | North Main Street     | Urban Minor Arterial     | 1.850  |
| Fall River         | Second Street         | Urban Minor Arterial     | 0.770  |
| Fall River         | Stafford Street       | Urban Minor Arterial     | 0.270  |
| Middleborough      | Centre Street         | Urban Minor Arterial     | 0.440  |
| Middleborough      | East Grove Street     | Urban Minor Arterial     | 2.670  |
| Middleborough      | Everett Street        | Urban Minor Arterial     | 0.830  |
| Middleborough      | West Grove Street     | Urban Minor Arterial     | 0.540  |
| Mansfield          | Chauncy Street        | Urban Principal Arterial | 0.110  |
| Mansfield          | Eastman Street        | Urban Principal Arterial | 0.410  |
| Mansfield          | Oakland Street        | Urban Minor Arterial     | 0.050  |
| Mansfield          | Pratt Street          | Urban Principal Arterial | 0.500  |
| North Attleborough | Hickory Road          | Urban Minor Arterial     | 0.110  |
| New Bedford        | Church Street         | Urban Minor Arterial     | 1.660  |
| New Bedford        | Cottage Street        | Urban Minor Arterial     | 1.090  |
| New Bedford        | Dartmouth Street      | Urban Minor Arterial     | 0.740  |
| New Bedford        | Kempton Street        | Urban Minor Arterial     | 1.080  |
| New Bedford        | Mount Pleasant Street | Urban Minor Arterial     | 1.120  |
| New Bedford        | Nash Road             | Urban Minor Arterial     | 0.050  |
| New Bedford        | New Plainville Street | Urban Minor Arterial     | 1.570  |
| New Bedford        | Park Avenue           | Urban Minor Arterial     | 0.040  |

# Table 8-3Roadways Requiring Rehabilitation

| Community   | Roadway                  | Functional Class         | Length |
|-------------|--------------------------|--------------------------|--------|
| New Bedford | Parker Street            | Urban Minor Arterial     | 0.900  |
| New Bedford | Rodney French Blvd       | Urban Minor Arterial     | 2.060  |
| New Bedford | School Street            | Urban Minor Arterial     | 0.070  |
| New Bedford | Union Street             | Urban Minor Arterial     | 0.920  |
| New Bedford | Weld Street              | Urban Minor Arterial     | 0.130  |
| Norton      | East Main Street         | Principal Arterial       | 0.450  |
| Norton      | Eddy Street              | Urban Minor Arterial     | 0.800  |
| Norton      | Old Colony Road          | Principal Arterial       | 0.840  |
| Norton      | South Worchester Street  | Urban Minor Arterial     | 0.210  |
| Plainville  | Messenger Street         | Urban Minor Arterial     | 0.890  |
| Plainville  | South Street             | Urban Minor Arterial     | 0.420  |
| Rehoboth    | Moulton Street (Rte 118) | Urban Principal Arterial | 0.400  |
| Seekonk     | Central Avenue           | Urban Minor Arterial     | 0.400  |
| Seekonk     | Newman Avenue            | Urban Minor Arterial     | 2.220  |
| Somerset    | Dublin Street            | Urban Minor Arterial     | 0.220  |
| Somerset    | Pleasant Street          | Urban Minor Arterial     | 0.510  |
| Taunton     | South Street             | Urban Minor Arterial     | 0.090  |
| Taunton     | Spring Street            | Urban Minor Arterial     | 0.240  |
| Taunton     | Washington Street        | Urban Minor Arterial     | 0.680  |
| Taunton     | Winthrop Street          | Urban Principal Arterial | 3.770  |
| Westport    | Old County Road          | Urban Minor Arterial     | 0.770  |

#### Table 8-3 (Continued) Roadways Requiring Rehabilitation

#### Recommendations

- Because of the value and the effectiveness of pavement management for transportation improvement evaluation, this Regional Transportation Plan recommends the continuous update of pavement conditions for all STP roads in our region. This would entail an update of the region's roadway conditions over a threeyear period. This program would commence in the SRPEDD FY 2007 Unified Planning Work Program. The results will continue to provide a tool for planners, engineers, and MassHighway to protect and maintain the investment in our roads now and in the future and to properly prioritize resurfacing projects.
- Communities should consider incorporating safety, congestion, and other elements (i.e. improved drainage, sidewalks and bike paths) into roadway reconstruction and rehabilitation projects in order to make them more competitive for federal funding.
- The amount of state and federal funds made available for the reconstruction and resurfacing of roadways needs to be dramatically increased. If annual Chapter 90 funding had simply kept pace with inflation and rising costs, the yearly allocation would need to be \$17 million. At present level (\$11 million), this region's funds have

actually dropped approximately 20% in the last ten years. This deficiency may require drastic fiscal measures, such as a major increase in the gasoline user fees to be reserved for transportation purposes and not diverted to the general fund during financial shortfalls.

• Consideration should be given for a statewide effort to obtain effective pavement management software that provides ease of use, appropriate results, and the ability for financial programming and prioritization and the ability to forecast pavement deterioration over time.